
Agile Effort Estimation:
Have We Solved the Problem Yet?

Insights From the Replication of the GPT2SP Study
Vali Tawosi

Department of Computer Science
University College London (UCL)

London, United Kingdom
vali.tawosi@ucl.ac.uk

Rebecca Moussa
Department of Computer Science
University College London (UCL)

London, United Kingdom
r.moussa@ucl.ac.uk

Federica Sarro
Department of Computer Science
University College London (UCL)

London, United Kingdom
f.sarro@ucl.ac.uk

Abstract—Replication studies in Software Engineering are
indispensable for ensuring the reliability, generalizability, and
transparency of research findings. They contribute to the cumu-
lative growth of knowledge in the field and promote a scientific
approach that benefits both researchers and practitioners. In this
article, we report our experience replicating a recently published
work proposing a Transformer-based approach for Agile Story
Point Estimation, dubbed GPT2SP.

GPT2SP was proposed with the intent of addressing the three
limitations of a previous Deep Learning-based approach dubbed
Deep-SE, and the results reported in the original study set
GPT2SP as the new state-of-the-art.

However, when we used the GPT2SP source code made
publicly available by the authors of the original study, we found
a bug in the computation of the evaluation measure and the
re-use of erroneous results from previous work, which had
unintentionally introduced biases in the GPT2SP’s performance
evaluation.

In this study, we report on the results we obtained after fixing
the issues present in the original study, which reveal that their
results were in fact unintentionally inflated due to these issues
and that despite advancements, challenges remain in providing
accurate effort estimations for agile software projects.

I. INTRODUCTION

Effort estimation in software development has been a
longstanding challenge, and recent advancements in machine
learning, particularly neural networks, have shown promise in
improving the accuracy and reliability of estimation models.

Fu and Tantithamthavorn [1] have recently proposed
GPT2SP, a Transformer-based deep learning model for Story
Point (SP) estimation of user stories to overcome the limita-
tions of the method previously proposed by Choetkiertikul et
al. [2], Deep-SE, which was not accurate enough [3].

They empirically assessed the performance of GPT2SP on
the same dataset where Choetkiertikul et al. [2] evaluated
Deep-SE, including 16 projects with a total of 23,313 issues.
They benchmarked GPT2SP against two baselines (namely the
naive Mean Effort and Median Effort) and Deep-SE for both
within- and cross-project estimation scenarios. Their results
showed that GPT2SP outperforms Deep-SE with a 6%-47%
improvement (computed based on the Mean Absolute Error)
for the within-project scenario and a 3%-46% improvement

for the cross-project scenario. However, when we attempted
to use the GPT2SP source code made available by Fu and
Tantithamthavorn [1] to reproduce their experiments, we found
a bug in the computation of the Mean Absolute Error (MAE),
which have inflated the GPT2SP’s accuracy reported in their
work. Therefore, we issued a pull request fixing such a bug,
which was accepted by Fu and Tantithamthavorn and merged
into the original work’s repository.1 Furthermore, the original
GPT2SP study used the Mean Effort and Median Effort
baseline results from the empirical study by Choetkiertikul
et al. [2], which were not correct (see Tawosi et al. [3] for a
description of the error in the baseline MAE values and for
its resolution).

In this paper, we report on the results we have obtained
by using the fixed version of GPT2SP and the correct Mean
and Median baseline results [3] to replicate the experiments
conducted in the original study by Fu and Tantithamthavorn
[1].

Following the original study, we analyse GPT2SP in two
scenarios, namely within-project and cross-project scenarios,
and benchmark its performance with those achieved by three
other approaches, namely Deep-SE, Mean Effort, and Median
Effort. We evaluate the results based on the Mean Absolute
Error (MAE) of the estimation methods over all issues in each
project, but also report the Median Absolute Error (MdAE)
and the Standard accuracy (SA), for completeness.

Our results showed that, in the within-project scenario,
GPT2SP outperforms the Median baseline and Deep-SE in
only six cases out of 16, where the difference is statistically
significant in only three cases against the Median (two with
negligible and one with small effect size), and two cases
against Deep-SE (both with negligible effect size). With
regards to the cross-project scenario, GPT2SP outperformed
Deep-SE in the majority of the cases, however, it performed
poorly against the Median baseline (outperforming it statisti-
cally significantly in only five of the 16 cases).

1https://github.com/awsm-research/gpt2sp/pull/2

Overall, our replication study confirms that GPT2SP per-
forms better than Deep-SE in the cross-repository scenario
as concluded by the original study. However, we found that
GPT2SP performs poorly when compared against the Median
baseline in both scenarios. Therefore, our replication results
do not support the main conclusion made in the original study
stating that GPT2SP significantly outperforms the baselines.

Based on the findings reported herein and those from a pre-
vious replication we carried out on the use of Deep Learning
for Agile software effort estimation [3], we conclude that the
two approaches proposed in the literature thus far (namely,
Deep-SE and GPT2SP [1], [2]) are not more effective than
much simpler baselines (such as using the mean or median
effort of past user stories as a prediction of the effort required
by new user stories) for agile open-source software develop-
ment effort estimation. Future studies need to further explore
and devise suitable techniques that can lead practitioners to
obtain more accurate agile software development estimates.

The remainder of the paper is structured as follows.
Section II provides an introduction to the estimation models
used in this study, including GPT2SP, Deep-SE, and the base-
line methods, describes the research questions, the dataset, and
measures used to evaluate the models’ performance. Section III
reports the results of our replication, while Section IV discuss
possible threats to validity of our study. Section V covers the
related work, and Section VI discusses the main take-away
messages and concludes the paper.

II. METHODOLOGY

This section provides a brief introduction to GPT2SP and
the benchmark techniques investigate in this work the research
questions we replicate from the work by Fu and Tantithamtha-
vorn [1], and the datasets and measures we used for evaluation.

A. Techniques

1) GPT2SP: GPT2SP [1] is a Transformer-based deep
learning model for SP estimation of user stories, which lever-
ages GPT-2 pre-trained language model. Therefore, GPT2SP
introduces three structural and design improvements over
Deep-SE. First, instead of word-level tokenization, GPT2SP
employs a byte-pair-encoding subword tokenization which
splits rare words into subword units, reducing the vocabulary
size to almost one-fourth. Second, unlike Deep-SE, which
needed pre-training on project-specific data, GPT2SP uses a
pre-trained model that can generate meaningful embedding
for any project. And third, GPT2SP uses GPT-2 architecture
[4] with a masked multi-head self-attention mechanism [5],
allowing it to capture the relationship among words better
while considering the context of a given word and its posi-
tion in the sequence. After the GPT-2 model for user story
embedding, GPT2SP uses a 3-layer Multi-Layer Perceptron
(MLP) regressor to learn a mapping between the embeddings
and story point value of the user stories.

2) Deep-SE: Choetkiertikul et al. [2] proposed Deep-SE
as a deep learning model to estimate the story point. Their
model is composed of four components: (1) Word Embedding,

(2) Document representation using Long-Short Term Memory
(LSTM) [6], [7], (3) Deep representation using Recurrent
Highway Network (RHWN) [8], and (4) Differentiable Re-
gression. The first component converts each word in the title
and description of issues (i.e., user story) into a fixed-length
vector (i.e., word embedding). These word vectors serve as an
input sequence to the LSTM layer, which computes a vector
representation for the whole document. The document vector
is then fed into the Recurrent Highway Network (RHWN),
which transforms the document vector multiple times before
outputting a final vector which represents the text. The vector
serves as input to the regressor that predicts the story point.

3) Baselines: The original study includes Mean Effort and
Median Effort as baselines, although these were not specifi-
cally considered in their RQs. Mean Effort and Median Effort
are two benchmarks commonly used for effort estimation
techniques [9]–[11]. Specifically, the mean (or median) story
point of the past issues is used as the predicted story point for
a new issue, when Mean Effort (or Median Effort) is used.

B. Research Questions

The original study formulated the following three research
questions to evaluate their proposal GPT2SP: Does our
GPT2SP outperform Deep-SE for within-project scenario?;
Does our GPT2SP outperform Deep-SE for cross-project
scenarios?; What are the contributions of the components of
GPT2SP?.

The within-project estimation uses previous user stories
from the same project to train a model and predict for future
user stories. Therefore, this scenario is not applicable to a new
project that has no user stories yet (known as the cold-start
problem). In such a case, a model is trained on user stories
from one or more previous projects and used to estimate user
stories of the new project (i.e., cross-project estimation).

In our replication study, we answer the first two questions
as well as benchmark GPT2SP with three common baselines
in effort estimation studies, as this is a best practice and
our previous work showed that DeepSE was not able to
always outperform simple baselines, thus it is crucial to assess
whether this is also the case for GPT2SP [11]. The research
questions we answer in this study are as follows:

• RQ1. Does GPT2SP outperform Deep-SE and the base-
lines for the within-project scenario?

• RQ2. Does GPT2SP outperform Deep-SE and the base-
lines for the cross-project scenario?

The original study also investigated a third research ques-
tion: What are the contributions of the components of
GPT2SP?. However, We do not replicate this question since
the replication of the first two questions showed that GPT2SP
is not an effective approach for the task at hand (see Section
III), and as such it became out of scope to further investigate
the contributions of the components of GPT2SP.

C. Dataset

We use the same benchmark dataset adopted in the original
study and therefore we conduct our experiments with 23,313

issues from 16 different projects. This benchmark dataset was
originally collected from JIRA and made publicly available
by Choetkiertikul et al. [2], [12]. The original study reused
it as-is. Specifically, For each project, issues and related key
information (i.e., issue ID, title, descriptions, and story points)
were collected through JIRA REST API up until August 8,
2016. Table I summarises the statistics of the datasets.

D. Evaluation Measures and Statistical Analysis

Several measures have been used in the software effort
estimation literature to measure the accuracy of the estimation
models. These measures are generally built upon the error
(or absolute error) between the predicted value and the actual
value (i.e., |Actual.value− Predicted.value|).

Similarly to the original study, we discuss all results of
our study based on the Mean Absolute Error (MAE) measure,
while we also report the Median Absolute Error (MdAE) and
Standard Accuracy (SA) values for completeness.

These measures (defined in Equations 1, 2 and 3) are
standardised measures which are not biased towards under- or
over-estimates, and thus, recommended by the previous work
[13], [14].

Across n issues, the MAE and MdAE are computed as
follows:

MAE =
1

n

n∑
i=1

|actuali − predictedi| (1)

MdAE = Mediann
i=1

{
|actuali − predictedi|

}
(2)

where actuali is the actual effort from the historical data,
predictedi is the predicted effort by the method and n is the
number of issues in a given project.

The bug in GPT2SP’s original implementation affected the
computation of MAE, and it arose from dividing the sum of
absolute errors by a number greater than n. To be specific, the
original implementation processed the input data in batches
and computed n as the number of batches multiplied by the
length of the first batch, while the way the batches were
divided (30% of the set) always left the final batch almost
empty with a few issues. This computation produced a number
n′, which was always greater than the actual value of n.
Therefore, the MAE computed was always smaller than the
actual MAE.

SA is recommended as a standard measure to compare
multiple prediction models against each other [13]. It is based
on MAE and is defined as follows:

SA =

(
1− MAEpi

MAEp0

)
× 100 (3)

where MAEpi is the MAE of the approach pi being evaluated
and MAEp0 is the MAE of a large number (usually 1, 000
runs) of random guesses.

For a prediction model pi which outperforms random guess-
ing in terms of accuracy, SA will produce a number in the

range [0, 1]. An SA value closer to zero means that the predic-
tor pi is performing just a little better than random guessing
[13], [15]. For a prediction model which is outperformed by
random guessing SA will produce a negative value. For a high-
performance prediction model MAE and MdAE should be
lower and SA should be higher than the competitors.

To check if the difference in the results achieved by the
two methods is statistically significant, we performed the
Wilcoxon Ranked-Sum test (a.k.a. Mann–Whitney U test)
on the distribution of the absolute errors produced by the
methods under investigation. Specifically, we used a one-sided
Wilcoxon test with a confidence limit of α = 0.05 to check
the following Null Hypothesis:

Null Hypothesis The distribution of absolute errors pro-
duced by GPT2SP is better (i.e., lower) than that produced by
prediction model Pi.

If the test rejects the Null Hypothesis, the alternative hy-
pothesis would be accepted:

Alternative Hypothesis The distribution of absolute errors
produced by GPT2SP is not better (i.e., not lower) than that
produced by prediction model Pi.

We decided to use a non-parametric test such as the
Wilcoxon one, as it does not make any assumption on the
normality of the distribution of the data at hand. We performed
a one-sided test since we are interested in knowing if a given
model (i.e., GPT2SP) would commit a smaller estimation error
than another model. In such a case, the one-sided p-value
interpretation would be straightforward.

To mitigate the risk of incorrectly rejecting the Null Hypoth-
esis (i.e., Type I error) [16], we also analyse how the results
would be when the Bonferroni correction is applied to cater
for multiple hypothesis testing (i.e., the confidence limit is set
as α/K, where K is the number of hypotheses). Therefore,
herein we report the original p-value results of the Wilcoxon
test.

We also use a standardised non-parametric effect size mea-
sure (i.e., the Vargha Delaney’s Â12 statistic) to assess the
practical magnitude of the difference between two methods, as
recommended in previous work [15]–[17]. For two algorithms
A and B, the Â12 measures the probability of A performing
better than B with respect to a performance measure. Â12 is
computed using Equation (4), where R1 is the rank sum of
the first data group being compared, and m and n are the
number of observations in the first and second data sample,
respectively.

Â12 =
(R1

m − m+1
2)

n
(4)

Based on Equation (4), if two algorithms are equally good,
Â12 = 0.5. Respectively, Â12 higher than 0.5 signifies that the
first algorithm is more likely to produce better predictions. The
effect size is considered negligible for Â12 < 0.6 (represented
by an ‘N’), small (S) for 0.6 ≤ Â12 < 0.7, medium (M) for
0.7 ≤ Â12 < 0.8, and large (L) for Â12 ≥ 0.8, although these
thresholds are not definitive [15]. We do not transform the

TABLE I: Descriptive statistics of the dataset.

Repository Project Name (Abbreviation used in [2]) Key Story Point
#Issues Min Max Mean Median Std

Mesos (ME) MESOS 1,680 1 40 3.09 3 2.42Apache Usergrid (UG) USERGRID 482 1 8 2.85 3 1.40

Appcelerator Studio (AS) TISTUD 2,919 1 40 5.64 5 3.33
Aptana Studio (AP) APSTUD 829 1 40 8.02 8 5.95Appcelerator
Titanium (TI) TIMOB 2,251 1 34 6.32 5 5.10

Bamboo (BB) BAM 521 1 20 2.42 2 2.14
Clover (CV) CLOV 384 1 40 4.59 2 6.55Atlassian
Jira Server and Data Center (JI) JRESERVER 352 1 20 4.43 3 3.51

DuraSpace Duracloud (DC) DURACLOUD 666 1 16 2.13 1 2.03

Lsstcorp Data Management (DM) DM 4,667 1 100 9.57 4 16.60

Moodle Moodle (MD) MDL 1,166 1 100 15.54 8 21.65

Mule (MU) MULE 889 1 21 4.90 5 3.61MuleSoft Mule Studio (MS) MULESTUDIO 732 1 34 6.40 5 5.39

Spring SpringXD (XD) XD 3,526 1 40 3.70 3 3.23

Talend Data Quality (TD) TDQ 1,381 1 40 5.92 5 5.19Talendforge Talend ESB (TE) TESB 868 1 13 2.16 2 1.50

Total 23,313

Â12 as we are interested in any improvement achieved by the
methods [15], [18].

To perform the above analyses, we used the Wilcoxon Rank-
Sum test and Vargha Delaney’s Â12 effect size available from
the stats library in R v. 4.0.1 [19].

III. RESULTS

RQ1. Does GPT2SP outperform Deep-SE and the base-
lines for the within-project scenario?

RQ1 aims at empirically assessing the prediction perfor-
mance of GPT2SP and compare them with the predictions
obtained by three other methods, namely Deep-SE, Mean
Effort and Median Effort.

Table II shows the results we obtained by running GPT2SP,
Deep-SE, and the Mean and Median baselines on each of the
16 software projects considered in our study. We can observe
that, for the within-project scenario, GPT2SP outperforms the
Median Effort baseline or Deep-SE in only six cases out of
16. Compared to the Mean Effort baseline, GPT2SP achieves
a lower MAE in 14 cases, and a very similar one in the
remaining two cases (i.e., Mule, Usergrid).

The results of the Wilcoxon Ranked-Sum test (α = 0.05)
applied to the distribution of absolute errors (see Table IV)
reveal that GPT2SP provides statistically significant better es-
timates than using Median Effort in only three cases (two with
negligible and one with small effect size), better estimates than
Deep-SE only in two cases (both with negligible effect size).
If we consider Bonferroni correction (by setting α = 0.016
for K = 3 hypothesis) the number of statistically significant
cases goes down to two and one for Median Effort and Deep-
SE, respectively. While, the difference between the absolute
errors obtained by GPT2SP and by Mean Effort is statistically

significant in 12 out of 16 cases in favour of GPT2SP, even
when considering the Bonferroni correction.

We conclude that the Median Effort baseline is the best
predictor for the within-project scenario achieving the lowest
MAE in 8 (50%) cases, followed by GPT2SP, which achieves
the lowest MAE in 5 (31%) cases, and Deep-SE achieving the
lowest MAE in only 3 (19%) cases.

Therefore, our replication disproves the results previously
obtained by Fu and Tantithamthavorn [1], that is we found
that GPT2SP does not outperform Deep-SE or the Median
Effort baseline in all cases for the within-project scenario.

For completeness, we report the MAE values obtained by
the original study [1] in Table III (which uses an incorrect
formula to compute the MAE as we explained in Section
II-D) as well as those obtained by our replication.2 We can
observe that the computation error of the MAE observed in the
original study, led to incorrect values which can be up to three
times lower (i.e., better) than the correctly computed value,
depending on the project, thus inflating GPT2SP’s results
reported in the original study [1].

RQ2. Does GPT2SP outperform Deep-SE and the base-
lines for the cross-project scenario?

As done in the original study by Fu and Tantithamtha-
vorn, we also investigated two cross-project estimation (CP)
scenarios, namely the within-repository (CPWR) and cross-
repository (CPCR) scenarios.

Table Va shows the results we achieved for GPT2SP, Deep-
SE and the Mean Effort and Median Effort baselines for
the CP within-repository scenario (CPWR). The results of
the Wilcoxon test on the distribution of the absolute errors

2The authors did not report the MdAE values in their article or GitHub
repository, as a result, we only compare the MAE values in Table III.

TABLE II: RQ1. Results obtained by GPT2SP, Deep-SE, and the two baselines (Mean and Median) for the Within-Project
scenario. Best results (among all approaches per project) are highlighted in bold.

Project Method MAE MdAE SA Project Method MAE MdAE SA

Mesos GPT2SP 1.21 0.98 42.56 Duracloud GPT2SP 0.80 0.50 47.97
Deep-SE 1.12 0.73 46.72 Deep-SE 0.82 0.53 46.97
Mean 1.41 1.78 33.18 Mean 1.00 1.14 35.17
Median 1.22 2.00 42.30 Median 0.82 1.00 46.78

Usergrid GPT2SP 1.19 1.02 22.56 Data Management GPT2SP 5.39 2.00 54.82
Deep-SE 1.18 0.80 23.25 Deep-SE 5.86 2.22 50.87
Mean 1.19 1.23 22.43 Mean 8.66 4.55 27.35
Median 1.15 1.00 24.97 Median 6.19 3.00 48.09

Appcelerator Studio GPT2SP 1.53 0.71 49.88 Moodle GPT2SP 8.38 8.53 45.76
Deep-SE 1.42 0.58 53.49 Deep-SE 7.89 4.93 48.92
Mean 1.91 1.52 37.52 Mean 12.63 12.11 18.21
Median 1.30 1.00 57.41 Median 6.59 6.00 57.32

Aptana Studio GPT2SP 3.52 3.10 37.75 Mule GPT2SP 2.61 2.23 28.55
Deep-SE 4.14 2.52 26.74 Deep-SE 2.59 1.96 29.14
Mean 3.59 3.46 36.53 Mean 2.60 2.22 28.72
Median 3.61 4.00 36.18 Median 2.47 2.00 32.29

Titanium GPT2SP 2.35 1.45 48.78 Mulesoft GPT2SP 3.70 2.62 23.55
Deep-SE 2.09 1.34 54.49 Deep-SE 3.67 2.26 24.12
Mean 3.02 1.97 34.29 Mean 3.74 2.80 22.65
Median 2.04 2.00 55.71 Median 3.66 3.00 24.32

Bamboo GPT2SP 0.77 0.69 54.30 Spring XD GPT2SP 1.78 1.54 37.09
Deep-SE 0.81 0.61 51.78 Deep-SE 1.70 1.31 39.96
Mean 1.22 1.31 27.99 Mean 2.05 2.53 27.59
Median 0.75 1.00 55.34 Median 1.71 2.00 39.55

Clover GPT2SP 3.76 0.97 32.89 Talend Data Quality GPT2SP 3.65 3.44 29.41
Deep-SE 3.39 0.80 39.41 Deep-SE 3.61 2.92 30.07
Mean 4.57 3.06 18.46 Mean 4.56 5.08 11.69
Median 3.71 2.00 33.77 Median 3.31 4.00 35.85

Jira Software GPT2SP 1.57 0.81 54.09 Talend ESB GPT2SP 0.86 0.55 38.81
Deep-SE 1.70 1.09 50.08 Deep-SE 0.90 0.59 36.19
Mean 2.40 2.15 29.61 Mean 1.04 0.91 26.47
Median 2.31 2.00 32.40 Median 0.92 1.00 34.86

produced by GPT2SP against each of the other methods are
provided in the last column of this table.

We can observe that GPT2SP outperforms Deep-SE in only
two out of eight cases (with marginal statistical significance
and negligible effect size in only one of the two cases),
whereas Deep-SE outperforms GPT2SP in six cases.

Moreover, GPT2SP outperforms the Median Effort baseline
in only two cases out of eight, with statistical significance but
negligible effect size in both cases. GPT2SP achieves a lower
MAE than that of the Mean Effort baseline in five cases, a
higher one in two, and an equal one in the remaining one
case out of eight cases, where the difference is significant for
three cases but always with a negligible effect size.

When considering the results of the cross-repository
(CPCR) scenario (see Table Vb), we observe that GPT2SP out-
performs Deep-SE in six cases out of eight with a statistically
significant difference in five of them out of which one shows a
medium effect size, one a small one, and three a negligible one.
GPT2SP achieves a lower MAE than that obtained by Median
Effort in three cases only, among which one case shows a
small effect size and two other cases show a negligible effect

size. GPT2SP outperforms the Mean Effort baseline in seven
cases with a statistically significant difference in six with a
large effect size in three, medium one in two and small in
one.

Overall, considering both cross-project scenarios, we ob-
served that overall GPT2SP performs better than Deep-SE,
which is the same conclusion achieved by the original study.
However, GPT2SP performs poorly when compared against
the Median Effort baseline, that is, it achieves statistically
significantly better results in less than a third of the cases
(i.e., five out of 16 cases). Therefore, our replication does not
support the conclusion made in the original study stating that
GPT2SP outperforms the baselines statistically significantly
for all cases in the cross-project scenarios.

IV. THREATS TO VALIDITY

Threats to construct validity relate to the quality of story
point datasets. Prior studies on defect and vulnerability predic-
tion raised concerns that the prediction models are inaccurate
if the ground-truth labels are noisy [20], [21]. Noisy labels are
generally caused by the use of heuristics to generate ground-
truth data.

TABLE III: RQ1. The MAE values obtained by the original
study (GPT2SPorig) Vs. those obtained by this replication
(GPT2SPrep) for within-project estimation.

Project GPT2SPorig GPT2SPrep

Mesos 0.66 1.21
Usergrid 0.68 1.19
Appcelerator Studio 0.84 1.53
Aptana Studio 1.93 3.52
Titanium 1.36 2.35
Bamboo 0.44 0.77
Clover 1.98 3.76
Jira Software 0.92 1.57
Duracloud 0.48 0.80
Data Management 3.10 5.39
Moodle 4.09 8.38
Mule 1.43 2.61
Mulesoft 2.04 3.70
Spring XD 0.96 1.78
Talend Data Quality 1.58 3.65
Talend ESB 0.50 0.86

TABLE IV: RQ1. Results of the Wilcoxon test (with Vargha-
Delaney Â12 effect size in parentheses) comparing the absolute
errors of GPT2SP to that of Deep-SE and the two baselines
(i.e., Mean and Median).

Project GPT2SP vs

Mean Median Deep-SE

Mesos 0.127 (0.55) 0.955 (0.43) 0.248 (0.53)
Usergrid <0.001 (0.70) M 1.000 (0.43) 0.999 (0.44)
Appcelerator Studio <0.001 (0.64) S 1.000 (0.37) 1.000 (0.43)
Aptana Studio 0.713 (0.48) 0.679 (0.49) 0.044 (0.55) N
Titanium <0.001 (0.70) M 0.583 (0.49) 0.516 (0.50)
Bamboo <0.001 (0.70) M 0.021 (0.59) N 0.412 (0.51)
Clover <0.001 (0.76) M 0.004 (0.54) N 0.001 (0.54) N
Jira Software <0.001 (0.62) S 0.988 (0.42) 0.478 (0.50)
Duracloud <0.001 (0.58) N 0.663 (0.49) 0.972 (0.46)
Data Management <0.001 (0.79) M 1.000 (0.31) 1.000 (0.40)
Moodle 0.323 (0.51) 0.678 (0.49) 0.294 (0.52)
Mule 0.497 (0.50) 0.751 (0.48) 0.722 (0.48)
Mulesoft <0.001 (0.59) N 0.962 (0.47) 0.843 (0.48)
Spring XD <0.001 (0.66) S 0.977 (0.45) 0.433 (0.50)
Talend Data Quality <0.001 (0.61) S 0.130 (0.53) 0.325 (0.51)
Talend ESB <0.001 (0.68) S <0.001 (0.65) S 0.217 (0.54)

The dataset used herein as well as the original study was
curated by Choetkiertikul et al. [2], and used herein, collect
story point data based on actual information provided in
the JIRA issue tracking system. This mitigates the risk of
inaccurate labelling, however, this data is input into the system
by engineers and thus it can be subject to human errors.
Overall, the quality of the data should not pose a fundamental
threat to our replication.

Threats to internal validity can arise from the hyperparam-
eter settings of GPT2SP. In our replication, we use the same
settings used for GPT2SP in the original study (as reported
in their replication package), and as such we inherit the
same threats. In fact, the GPT2SP setting consists of various
hyperparameters (i.e., number of hidden layers, number of
attention heads, and learning rate) and finding an optimal
setting is very expensive given the large search space of the

TABLE V: RQ2. Comparing GPT2SP performance with Deep-
SE and the baselines in two cross-project scenarios: (a) Within-
and (b) Cross-Repository. The results of the Wilcoxon test
(Â12 effect size in parentheses) for GPT2SP vs. Deep-SE and
baselines are shown in the last column. Best results (among
all approaches per project) are highlighted in bold.

(a) Within-Repository

Source Target Method MAE MdAE SA GPT2SP vs.

MESOS USERGRID GPT2SP 1.11 0.84 42.49
(ME) (UG) Deep-SE 1.16 0.96 39.84 0.049 (0.53) N

Mean 1.02 0.19 46.99 0.998 (0.45)
Median 0.89 0.00 54.10 1.000 (0.37)

USERGRID MESOS GPT2SP 1.52 0.92 15.64
(UG) (ME) Deep-SE 1.51 1.01 16.18 0.662 (0.50)

Mean 1.52 0.80 15.57 0.325 (0.50)
Median 1.50 1.00 16.27 0.692 (0.50)

TISTUD APSTUD GPT2SP 4.62 3.37 7.99
(AS) (AP) Deep-SE 4.37 2.98 12.99 1.000 (0.45)

Mean 4.27 2.18 15.05 0.992 (0.47)
Median 4.38 3.00 12.73 1.000 (0.43)

TISTUD TIMOB GPT2SP 3.28 2.47 22.60
(AS) (TI) Deep-SE 3.38 2.39 20.31 0.253 (0.51)

Mean 3.45 2.82 18.69 <0.001 (0.56) N
Median 3.17 2.00 25.24 1.000 (0.44)

APSTUD TISTUD GPT2SP 2.86 2.45 45.15
(AP) (AS) Deep-SE 2.70 2.07 48.25 1.000 (0.47)

Mean 3.38 3.24 35.20 <0.001 (0.58) N
Median 3.17 3.00 39.30 <0.001 (0.55) N

APSTUD TIMOB GPT2SP 4.09 3.52 30.38
(AP) (TI) Deep-SE 3.51 2.53 40.34 1.000 (0.39)

Mean 4.36 4.24 25.78 <0.001 (0.56) N
Median 4.19 4.00 28.67 0.004 (0.52) N

MULE MULESTUDIO GPT2SP 3.48 2.29 21.32
(MU) (MS) Deep-SE 3.64 2.04 17.61 0.206 (0.51)

Mean 3.34 2.71 24.42 0.943 (0.48)
Median 3.26 3.00 26.26 0.999 (0.45)

MULESTUDIO MULE GPT2SP 3.03 2.65 30.27
(MS) (MU) Deep-SE 2.77 2.47 36.28 0.985 (0.47)

Mean 3.05 1.77 29.83 0.078 (0.52)
Median 2.60 3.00 40.24 1.000 (0.43)

(b) Cross-Repository

Source Target Method MAE MdAE SA GPT2SP vs.

TISTUD USERGRID GPT2SP 2.18 2.03 37.67
(AS) (UG) Deep-SE 3.47 3.50 0.98 <0.001 (0.76) M

Mean 3.08 2.82 12.02 <0.001 (0.73) M
Median 2.30 2.00 34.40 <0.001 (0.56) N

TISTUD MESOS GPT2SP 2.65 2.75 28.83
(AS) (ME) Deep-SE 3.18 3.20 14.70 <0.001 (0.60) S

Mean 3.28 2.82 11.95 <0.001 (0.64) S
Median 2.58 3.00 30.85 0.994 (0.47)

MDL APSTUD GPT2SP 4.37 3.07 68.12
(MD) (AP) Deep-SE 5.03 3.77 63.29 <0.001 (0.55) N

Mean 9.84 8.95 28.21 <0.001 (0.86) L
Median 3.97 3.00 71.05 0.989 (0.47)

MDL TIMOB GPT2SP 3.60 2.53 73.90
(MD) (TI) Deep-SE 3.34 1.96 75.82 1.000 (0.45)

Mean 11.19 11.95 18.91 <0.001 (0.91) L
Median 4.19 4.00 69.63 <0.001 (0.60) S

MDL TISTUD GPT2SP 2.16 1.96 83.92
(MD) (AS) Deep-SE 2.64 1.66 80.35 <0.001 (0.57) N

Mean 11.45 11.95 14.90 <0.001 (0.98) L
Median 3.17 3.00 76.44 <0.001 (0.61) S

DM TIMOB GPT2SP 3.58 2.31 61.99
(TI) Deep-SE 3.81 2.65 59.52 <0.001 (0.53) N

Mean 5.61 5.03 40.35 <0.001 (0.75) M
Median 3.46 1.00 63.22 0.999 (0.47)

USERGRID MULESTUDIO GPT2SP 4.02 2.16 4.57
(UG) (MS) Deep-SE 3.95 2.11 6.18 0.865 (0.48)

Mean 4.04 2.20 4.00 0.145 (0.52)
Median 3.91 2.00 7.16 0.996 (0.46)

MESOS MULE GPT2SP 3.13 2.24 9.57
(ME) (MU) Deep-SE 3.20 2.31 7.37 0.347 (0.51)

Mean 2.89 1.81 16.56 0.999 (0.46)
Median 2.92 2.00 15.65 0.999 (0.46)

Transformer architecture. Given the goal of the original study
was not to find the best hyperparameter setting, they did not
perform any tuning and stated that the accuracy reported in
their paper should serve as a lower bound of the performance
of GPT2SP, which may be improved through hyperparameter
optimization.

To straighten conclusion validity, we carefully computed the
evaluation measures and applied statistical tests by verifying
all the required assumptions.

Threats to the external validity relate to the generalizability
of the accuracy of our GPT2SP approach. The results obtained
herein are based on 23,313 issues from open-source projects,
future work can enhance the external validity by exploring dif-
ferent open-source (e.g., TAWOS [22]) or proprietary software
projects.

V. RELATED WORK

Effort estimation in Agile software development poses
unique challenges due to the dynamic and iterative nature of
Agile projects. Recent research has explored the application of
deep learning techniques to address these challenges and en-
hance the accuracy of effort estimation in Agile contexts. This
section provides an overview of key studies in the application
of deep learning for Agile software effort estimation.

The first study using Neural Networks (NN) for Agile effort
estimation was published in 2011 by Abrahamsson et al. [23].
They trained a model on 17 features extracted from user stories
such as the priority and number of the characters in the user
story, and 15 binary variables representing the occurrence of
15 keywords in the user stories. They applied their model to
two industrial case studies, one consisting of 1,325 user stories
and the other of 13 user stories. The models were able to
predict story points with a relative root square error of 44%
for one case study, but more than 100% for the other.

Soares [24] used an NLP technique based on auto-encoder
neural networks to classify user stories based on the semantic
differences in their title into story point classes. They used
TF/IDF and document embedding with four variants of auto-
encoders, and evaluated these models on 3,439 issue reports
from six open-source projects. The results revealed no sig-
nificant difference in the SP estimation accuracy of these
approaches. Soares speculated that this might be due to the
relative semantic simplicity of issue report titles.

Choetkiertikul et al. [2] proposed Deep-SE, a new approach
based on the combination of two deep learning architectures
to build an end-to-end prediction system for SP estimation.
They used raw user story text as input to their system. The
model generates word embeddings based on pre-training on
previous user stories and maps the embeddings to the target
SP value using a regression model. They evaluated Deep-SE
on 23,313 issues from 16 open-source projects and showed
that it outperforms benchmarks which included Mean and
Median baselines. Subsequently, Abadeer and Sabetzadeh [25]
evaluated the effectiveness of Deep-SE for SP prediction with
a commercial dataset of 4,727 user stories collected from a
healthcare data science company. They found that Deep-SE

outperforms random guessing, Mean and Median baselines
statistically significantly, however with a small effect size.

Tawosi et al. [3] replicated the Deep-SE [2] study and
extended the evaluation to a larger and more diverse dataset.
After fixing a bug in Deep-SE’s evaluation code, they found
that Deep-SE outperformed the baseline methods statistically
significantly in only 46% of the cases which is less than half
the cases.

In a recent study, Tawosi et al. [26] used a Large Language
Model (LLM) (GPT4, specifically) to estimate story points for
Agile user stories from three open-source projects. The results
showed that the LLM’s estimation performance was inferior
to that of the Mean and Median baselines in a zero-shot
setting. Thus, the authors used Multi-Objective Optimisation
techniques to find the optimal set of example user stories
to improve the LLM’s estimation performance in a few-
shot setting. The final results improved the LLM’s estimation
performance to outperform both the baselines in all three
projects.

In summary, the application of deep learning for agile
software effort estimation presents a dynamic and evolving
field. Researchers continue to explore novel architectures,
representation learning techniques, and real-world applications
to advance the capabilities of deep learning models in pre-
dicting software development effort. Despite advancements,
challenges remain, including model accuracy, interpretability,
handling diverse data sources, and addressing uncertainties.

VI. CONCLUSIONS

In this paper, we presented a replication of the study by
Fu and Tantithamthavorn [1] published in the IEEE Transac-
tions on Software Engineering in 2022. The authors proposed
GPT2SP, a Transformer-based deep learning model for Story
Point (SP) estimation of user stories with the aim of overcom-
ing the limitations of Deep-SE, a method previously proposed
by Choetkiertikul et al. [2].

Our replication effort allowed us to reveal a bug in the
source code used in the original work [1], which has caused
a discrepancy in the results reported in the original study
and obtained herein by using a bug-free version of the same
code. Such a discrepancy is not negligible, in fact, it changed
the main finding of the original work: We showed that the
proposed approach is not more effective than a mere Median
Effort baseline. Based on these results, GPT2SP cannot be
considered the current state-of-the-art approach to agile effort
development estimation. On the other hand, Deep-SE was also
shown to be not effective in a previous replication study [3].
Taken together, the results of these two replication studies,
suggest that there is no effective state-of-the-art approach for
agile effort estimation, and further research is needed in this
area to find suitable techniques that can provide engineers with
accurate agile software development effort estimates. More-
over, based on our experience undertaking replication studies,
we would like to highlight two more general take-aways.
We understand that researchers can sometimes unintentionally
make mistakes in their studies, however these mistakes can

be revealed and fixed by subsequent research when a study
provides enough information/material to be replicated, as in
the case of the work by Fu and Tantithamthavorn [1] and
Choetkiertikul et al. [2], who made publicly available their
data and source code. Moreover, replication studies, as well
as negative results, are important and should be encouraged
and supported by the software engineering research commu-
nity. Researchers should work together towards this end. We
contacted the authors of the original study to share the results
of our replication before submitting our work for peer-review,
in order to check with them whether our understanding of
their work and our findings were sound. The authors were
responsive and supportive and even incorporated our suggested
fix in their repository. We believe that such collegial behaviour
in support of replication studies is exemplary and should
be embraced by our community in order to strengthen the
foundation of Empirical Software Engineering Research.

DATA AVAILABILITY

The data used in this study is publicly available at [12],
while the correct source code for GPT2SP and Deep-SE
is available at https://github.com/awsm-research/gpt2sp/pull/2
and https://github.com/SOLAR-group/AgileEffortEstimation,
respectively.

ACKNOWLEDGMENTS

This work has been supported by the European Research
Council Advanced Grant no.741278.

We would like to thank the authors of the original study for
their responsiveness and openness in discussing their work
with us, thereby supporting our replication study.

REFERENCES

[1] M. Fu and C. Tantithamthavorn, “GPT2SP: A transformer-based agile
story point estimation approach,” IEEE Transactions on Software Engi-
neering, 2022.

[2] M. Choetkiertikul, H. K. Dam, T. Tran, T. Pham, A. Ghose, and
T. Menzies, “A deep learning model for estimating story points,” IEEE
Transactions on Software Engineering, vol. 45, no. 7, pp. 637–656, 2019.

[3] V. Tawosi, R. Moussa, and F. Sarro, “Agile effort estimation: Have
we solved the problem yet? insights from a replication study,” IEEE
Transactions on Software Engineering, 2022.

[4] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving
language understanding by generative pre-training,” 2018.

[5] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[6] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[7] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with LSTM,” Neural Computation, 1999.

[8] T. Pham, T. Tran, D. Phung, and S. Venkatesh, “Faster training of very
deep networks via p-norm gates,” in 2016 23rd International Conference
on Pattern Recognition (ICPR). IEEE, 2016, pp. 3542–3547.

[9] N. Mittas, I. Mamalikidis, and L. Angelis, “A framework for comparing
multiple cost estimation methods using an automated visualization
toolkit,” Information and Software Technology, vol. 57, pp. 310–328,
2015.

[10] P. A. Whigham, C. A. Owen, and S. G. Macdonell, “A baseline model for
software effort estimation,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 24, no. 3, pp. 1–11, 2015.

[11] V. Tawosi, F. Sarro, A. Petrozziello, and M. Harman, “Multi-objective
software effort estimation: a replication study,” IEEE Transactions on
Software Engineering (TSE), vol. 48, no. 8, pp. 3185–3205, 2021.

[12] “Deep-SE Source Code GitHub.” [Online]. Available: https://github.
com/morakotch/datasets/tree/master/storypoint/IEEE\%20TSE2018

[13] M. Shepperd and S. MacDonell, “Evaluating prediction systems in
software project estimation,” Information and Software Technology,
vol. 54, no. 8, pp. 820–827, 2012.

[14] W. B. Langdon, J. Dolado, F. Sarro, and M. Harman, “Exact mean
absolute error of baseline predictor, MARP0,” Information and Software
Technology, vol. 73, pp. 16–18, 2016.

[15] F. Sarro, A. Petrozziello, and M. Harman, “Multi-objective software
effort estimation,” in 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE). IEEE, 2016, pp. 619–630.

[16] F. Sarro, R. Moussa, A. Petrozziello, and M. Harman, “Learning from
mistakes: Machine learning enhanced human expert effort estimates,”
IEEE Transactions on Software Engineering, 2020.

[17] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering,” Software
Testing, Verification and Reliability, vol. 24, no. 3, pp. 219–250, 2014.

[18] G. Neumann, M. Harman, and S. Poulding, “Transformed vargha-
delaney effect size,” in International Symposium on Search Based
Software Engineering. Springer, 2015, pp. 318–324.

[19] “R: The R Project for Statistical Computing, V. 4.0.1,” 2020. [Online].
Available: https://www.r-project.org/

[20] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, A. Ihara, and K. Mat-
sumoto, “The impact of mislabelling on the performance and inter-
pretation of defect prediction models,” in 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, vol. 1, 2015, pp.
812–823.

[21] M. Jimenez, R. Rwemalika, M. Papadakis, F. Sarro, Y. Le Traon,
and M. Harman, “The importance of accounting for real-world
labelling when predicting software vulnerabilities,” in Proceedings
of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2019. New York, NY, USA:
Association for Computing Machinery, 2019, p. 695–705. [Online].
Available: https://doi.org/10.1145/3338906.3338941

[22] V. Tawosi, A. Al-Subaihin, R. Moussa, and F. Sarro, “A versatile
dataset of agile open source software projects,” in Proceedings of
the 19th International Conference on Mining Software Repositories,
ser. MSR ’22. New York, NY, USA: Association for Computing
Machinery, 2022, p. 707–711. [Online]. Available: https://doi.org/10.
1145/3524842.3528029

[23] P. Abrahamsson, I. Fronza, R. Moser, J. Vlasenko, and W. Pedrycz,
“Predicting development effort from user stories,” in ESEM. IEEE,
2011, pp. 400–403.

[24] R. G. Soares, “Effort estimation via text classification and autoencoders,”
in 2018 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2018, pp. 01–08.

[25] M. Abadeer and M. Sabetzadeh, “Machine learning-based estimation
of story points in agile development: Industrial experience and lessons
learned,” in REW. IEEE, 2021, pp. 106–115.

[26] V. Tawosi, S. Alamir, and X. Liu, “Search-based optimisation of
LLM learning shots for story point estimation,” in 15th International
Symposium on Search-Based Software Engineering. Springer, 2023.

